If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-18t+18=121
We move all terms to the left:
t^2-18t+18-(121)=0
We add all the numbers together, and all the variables
t^2-18t-103=0
a = 1; b = -18; c = -103;
Δ = b2-4ac
Δ = -182-4·1·(-103)
Δ = 736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{736}=\sqrt{16*46}=\sqrt{16}*\sqrt{46}=4\sqrt{46}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-4\sqrt{46}}{2*1}=\frac{18-4\sqrt{46}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+4\sqrt{46}}{2*1}=\frac{18+4\sqrt{46}}{2} $
| -5x12=3x8 | | m/3+31=36 | | 2q-10=50-10q+q^2 | | 5xx12=3xx-8 | | 7.xxx=7.3 | | 3x-21+9x=12x+8 | | 5x12=3x3 | | 1/8y+1=3 | | 12(z+4)-4(z-2)=3(z-4)+4(z-4) | | 300+.014x=200.025x.011x=100 | | 3r–3=4r | | 0.4=0.xx | | 7(7x-10=8(6x-10) | | 300+.014x=200.025x | | 9(8x+5)=140 | | 3-9x-5=-2x-11-5x | | 20=4x/3 | | 6x+30=7.1x+34.4 | | t^2-18=121 | | 2+y=41 | | 2+4x-7=2x+15-10x | | 690=h+215 | | (t-9)^2=61 | | 5=-5x-3 | | 14.s=7 | | -9.6y-15.4=4.3y+26.3 | | 28=v/16 | | Y+2y+45=85 | | -4x-8=10x-13 | | 9(2x-)=45 | | -6=-x-2 | | s+782=820 |